

Full Length Article

Genetic Analysis and Post-Translation Modifications of 60S Ribosomal Protein L30 in Sordaria fimicola

Rabia Arif^{1*}, Sadia Qasim¹, Memuna Ghafoor Shahid², Siu Fai Lee³ and Muhammad Saleem¹

¹Department of Botany, Molecular Genetics Research Laboratory, University of the Punjab, Lahore Pakistan

²Department of Botany, Government College University, Lahore Pakistan

³Department of Biological Sciences, Macquarie University and CSIRO Black Mountain Laboratories, Building 101, Clunies Ross Street, Black Mountain, ACT 2601, Australia

For Correspondence: phdgenetics@gmail.com

Abstract

Ribosomes are extremely conserved organelles whose essential composition has usually been viewed as invariant. Though, recent studies have characterized remarkable variations in the expression of some ribosomal proteins (RPs) through species and very much particular effects on translation of individual mRNAs. So far, no genetic diversity and prediction of post translation modifications (PTMs) in large ribosomal subunit *L30* (*RpL30*) protein were investigated in *S. fimicola* in any region of the world. To bridge this gap during the current work an attempt was made to predict post translational modifications on *RpL30* protein. During the current study we used *S. macrospora* and *Neurospora crassa* as reference organisms. Of the 329 nucleotide, polymorphism was observed on five nucleotide positions. The *O*-glycosylation was predicted on serine and threonine while glycosylation on S6 and S8 residues was found to be conserved among *S. fimicola*, *S. macrospora* and *N. crassa*. Altogether, total 14 sites (8Ser/4Thr/2Y) of phosphorylation modifications were observed in *N. crassa* and *S. fimicola* while *S. macrospora* exhibited two additional modifications *i.e.*, Ser66 and Ser91. © 2019 Friends Science Publishers

Keywords: Diversity; Glycosylation; Methylation; Nucleotides; Phosphorylation

Introduction

The family Sordariaceae includes large number of fungi that can be used for biological, ecological and genetic studies. To produce the phylogenies within Sordariaceae diverse gene datasets were analysed separately and in addition combined (Eriksson et al., 2004). There are three demonstrative genera of Sordariaceae i.e., Gelasinospora, Neurospora and Sordaria. These fungi, though firmly correlated, retain specific common natural habitats. The family Sordariaceae holds 7-10 genera (Kirk et al., 2008). The genus Sordaria has three important species that are genetically most studied i.e. S. fimicola, S. macrospore and S. brevicollis (Saleem et al., 2001). The genus Sordaria plays an important role as a saprophyte. Members of this genus recycle natural organic material and release the nutrients in the soil which increases the soil fertility. So far, the genome of S. fimicola is not sequenced and little information is available about the genome of this fungus. Therefore, here an attempt was made to highlight the effectiveness of 60S ribosomal large subunit protein (RpL30) and different post-translational modifications predictor tools to gauge the genetic diversity of S. fimicola with reference to N. crassa and S. macrospora.

Ribosomes are the organelles which are responsible

for synthesis of protein (Ban *et al.*, 2000; Yusupov *et al.*, 2001) and account for the 90% of the transcriptional activity in cell (Rudra and Warner, 2004). In the course of evolution, the ribosomal proteins are found to be extremely conserved and are directly involved in the process of translation (Wool *et al.*, 1995). The RNA-binding capabilities of these proteins are involved in controlling ribosome turnover in the cell (Stark *et al.*, 2002; Schmeing *et al.*, 2003).

In the nucleus, genes for ribosomal protein are transcribed and exported for translation to the cytoplasm (Milgrom et al., 2007). The Large subunit of ribosomes in eukaryotes comprised of 5S and 28S rRNAs and 34 diverse proteins (L1-L34) subsequently, L30 is the protein of 60S subunit of ribosome, encoded by *RpL30* gene in eukaryotes (Nesterchuk et al., 2011). In fungi the modifications of prerRNA in nucleolus are occupied by L30 protein, the splicing of the transcript is also auto regulated. The L30 protein of fungi is homologous to the L30 protein of mammals (Yoganathan et al., 1993; Vilardell et al., 2000). The RpL30 gene plays various molecular and biological roles in the cells of fungi e.g., as binding of RNA, ribosomal structural constituent along with rRNA processing and cytoplasmic translation (Ben-Shem et al., 2012) and negative regulation of mRNA splicing via spliceosome. The spliceosome removes introns from transcribed pre mRNA (Macias et al., 2008).

To cite this paper: Arif, R., S. Qasim, M.G. Shahid, S.F. Lee and M. Saleem, 2019. Genetic analysis and post-translation modifications of 60s ribosomal protein *L30* in *Sordaria fimicola. Intl. J. Agric. Biol.*, 22: 1675-1680

A typical structure of protein has many domains; these domains are responsible for various modifications which are controlled by a range of enzymes such as kinases and these modifications lead to the formation of diverse classes of proteins (Lothrop *et al.*, 2013). The small ribosomal subunit (SSU) attaches to the messenger RNAs and translates the coded message by picking similar amino acyl-transfer RNA. The large subunit (LSU) covers the ribosomal catalytic position that is called the peptidyl transferase center (PTC), which catalyses the development of peptide bonds, ultimately polymerizing the peptide chains. The emerging polypeptides leave the ribosome by a channel in the large sub unit and act together with protein factors that help in enzymatic processing of the ribosomal tunnel (Khoury *et al.*, 2011).

Various biological functions have been described for the eukaryotic ribosomal protein L30. It makes many intersubunit and intra-subunit connections with protein or RNA constituents of the 80S ribosome (Dobrenel *et al.*, 2016). The *RpL30* protein (Ban *et al.*, 2000) is regulated by certain ecological conditions and it was found that heat and a low energy balance cause de-phosphorylation of this protein (Williams *et al.*, 2003; Nukarinen *et al.*, 2016) while certain growth hormones like auxin, and physical factors like low temperature and various carbohydrates like sucrose increase its phosphorylation (Turck *et al.*, 2004). Post-translational modifications are of various types like phosphorylation, acetylation, methylation, and O-glycosylation (Vodermaier, 2004; Zeidan and Hart, 2010; Beltrao *et al.*, 2012).

In eukaryotic proteins the regulation and stabilization of structure is controlled by post translational modifications (Halushka et al., 1999; Din et al., 2010; Minguez et al., 2012). Ribosomal protein phosphorylation takes place in all organisms and it has been studied in detail in yeast to plants and humans, but in spite of thorough study, the biochemical significance of ribosomal proteins phosphorylation for translation is basically unidentified (Yerlikaya et al., 2016). Phosphorylation of the vast majority of ribosomal proteins in cells on Ser, Thr, and Y residues may play important role in intracellular signal transduction and may be an effective and operational way to regulate most physiological activities, including metabolism, transcription, DNA replication and repair, cell proliferation, and apoptosis (Arnold et al., 1999; Pawson and Scott, 2005; Raman et al., 2007).

Variations in ribosomal proteins might be responsible for the enormous number of modifications in ribosome (Cascorbi *et al.*, 2001; Warner and McIntosh, 2009). Based upon the above mentioned significance, we directed to take advantage of accessible bioinformatics tools to calculate post translational modifications for *S. fimicola* and to investigate population structure in the Evolution Canyon (EC). The hypothesis of the current study was that more genetic variations and modifications are directed to occur in strains that were isolated from the harsh environment.

Materials and Methods

Experimental Organism

All the stock cultures of *S. fimicola* strains used in the present study were provided by Molecular Genetics Research Laboratory, Department of Botany, University of the Punjab, Lahore. All the cultures were sub-cultured on Potato Dextrose Agar (PDA) growth medium at 18°C under aseptic conditions.

Genomic DNA Extraction

Modified Pietro et al. (1995) method was adopted for the extraction of genomic DNA of all the strains. The 15-20 mg mycelium of S. fimicola scratched out and crushed into powder by using liquid nitrogen. Sample crushed by adding 600 μ L lysis buffer, incubated at 65°C in hot water bath and centrifuged at 13000 g for 15 min. Supernatant was taken out, 600 µL phenol: chloroform: Isoamyl-alcohol (25: 24: 1 v/v) was added and centrifuged. Then added 300 μ L of chloroform: Isoamyl-alcohol (25:1 v/v) in the supernatant and centrifuged. After this, supernatant was taken out and 1 mL ice chilled isopropanol was added followed by overnight incubation at -20°C and centrifugation. The pellet of DNA obtained at bottom, double washed the pellet with 150 μ L 70% ethanol, dried the pellet by inverting it on blotting paper and dissolved the pellet in 150 μ L Tris TE buffer. The DNA was stored at -20°C for later use. The extracted DNA was quantified on 1% agarose gel by gel (GE-100 Mini-run Electrophoresis electrophoreses hangzhoubioer technology., Ltd.) stained with ethidium bromide and photographed under gel documentation system.

Oligonucleotides

The forward and reverse primers used were RpL30-F (TGGCCCCCAAGAAGTCCAAG) and RpL30-R (AATGACGACGACGACCAGCCGCT): targeting exonic regions flanking introns. The primers were designed using Primer3plus software. 10 m*M* working solution of each primer was prepared from 100 m*M* stock primers, purchased from Macrogen, Korea.

Polymerase Chain Reaction (PCR) Conditions

PCR amplifications were performed for the large ribosomal subunit gene *L30* on a GeneAmp PCR 9600 (Perkin Elmer) in 50 μ L of PCR master mix containing 5 μ L 10 X PCR Buffer, 5 μ L dNTPs, 5 μ L MgCl₂, 2 μ L rpl30 primer (forward and reverse), 1 μ L *Taq* polymerase, 3 μ L template DNA and 29 μ L dd.H₂O under the following touchdown (TD) cycling conditions. Initial denaturation was set on 94°C for 0.15 sec, second step was annealing at 65°C for 0.30 sec, and third step was extension/elongation at 94°C for 0.15 sec.

Sequencing of RpL30 Gene

The PCR products of targeted regions were purified by gel electrophoresis in 1.5% (w/v) agarose gel followed by a GeneClean (BIO 101, Vista, C.A., U.S.A.) procedure conferring to the manufacturer's guidelines and sent for sequencing to Macrogen, Korea (Geumcheon-gu, Seoul).

RpL30 Gene Sequence Analysis

RpL30 gene sequences were aligned with reference organism *Sordaria macrospora* published sequences from NCBI, GenBank by using basic local alignment search tool (BLAST) (Altschul *et al.*, 1990). Multiple sequence alignment software CLUSTAL *O* was used to evaluate polymorphic sites between different strains of *S. fimicola*.

Results

Calculation of Base Substitutions

During this study, we calculated base substitutions in the exonic region of the RpL30 gene in six parental strains (S₁) S_2 , S_3 , N_5 , N_6 and N_7) of S. finicola. These strains were isolated from the South slope (S-slope) and the North slope (N-slope) of EC. On the South slope there were three assigned stations i.e. 1, 2 and 3. S₁, S₂, S₃ strains were collected from these three stations of the South slope. There were also three assigned stations on the North slope *i.e.*, 5, 6 and 7. N₅, N₆ and N₇ strains were sampled from 5, 6 and 7 station of the N-slope. Base substitutions on three nucleotides i.e., A(101)T; A(197)G and C(198)T with 50% of percentage prevalence was observed in S1, S2, S3 strains of S. finicola which were isolated from the S-slope of EC. Genetic polymorphism on position T(180)A with 60% of percentage prevalence was calculated in S₁, S₂, S₃ and N₅ strains but not found among N6 and N7 strains whereas genetic variation on position C(244)G with 100% of percentage prevalence was found to be conserved in all the strains of S. fimicola (Table 1).

Prediction of Glycosylation

Glycosylation predicted sites by YinOYang 1.2 (www.cbs.dtu.dk/services/YinOYang) showed glycosylation on serine and threonine residues. No threonine glycosylation modification sites were predicted in any of the filamentous fungi *i.e.*, *S. fimicola*, *N. crassa* and *S. macrospora*. In these three above mentioned fungi glycosylation on S6 and S8 postions were found to be conserved while in case of *N. crassa* one additional sites on serine at position S7 was also predicted (Table 2).

Prediction of Phosphorylation

NetPhos 3.1 server (www.cbs.dtu.dk/services/NetPhos/)

was used to predict the phosphorylation on serine/threonine/tyrosine residues in N. crassa, S. fimicola and S. macrospora. In N. crassa serine phosphorylation modifications were predicted on eight sites (S6, S8, S12, S23, S56, S62, S65, S91) threonine modifications on four sites (T33, T50, T75, T92). In S. fimicola phosphorylation was also predicted on eight serine residues (S6, S7, S8, S12, S23, S39, S57, and S63) but slightly on different postions; threonine modification on T51, T68, T76 and T92 while in S. macrospora serine modification on ten positions were predicted (S6, S7, S9, S12, S23, S39, S57, S63, S66, S91) and T33, T51, T76, T92 were predicted on threonine residues. Tyrosine modifications on residues Y61 and Y62 are common in all the three fungi except on Y60 position that was predicted only in N. crassa. S7, S39, S57, S63 modifications were common in S. fimicola and S. macrospora (Table 2). Among these sites S6, S12, S23, T92 and Y61 phosphorylation were found to be conserved (Fig. 1) in the above mentioned three filamentous fungi.

Prediction of Sumoylation

We also predicted the sumoylation sites for *RpL30* proteins during the present investigation by online server available at http://sumosp.biocuckoo.org (Table 3). This Table depicts the modified position, modified peptide, predicted score, prediction cut-off value, P-value and regulation type. Sumoylation on position 7 on peptide (*MAPKSSKSDAQSIG) were predicted in S. fimicola and S. macrospora while it is absent in N. crassa. Sumoylation on position 47 is predicted only in S. macrospora but not predicted in S. fimicola and N. crassa. Similarly, sumoylation on position 48 is predicted only in N. crassa and S. fimicola but not in S. macrospora.

Prediction of Nuclear Export Signals

To predict the nuclear export signals (NES), NetNES 1.1 Server (http:// www.cbs.dtu.dk/services/NetNES/) was used. NES were predicted on L, K, A, R and G residues on positions 34–45 in all the three above mentioned fungi (Table 4). NetNES predictor server predicted the NES score from the HMM and Artificial Neural Network (ANN) scores.

Discussion

In this study, we found genetic polymorphisms on five nucleotides and three of five polymorphic sites were present *i.e.*, A(101)T; A(197)G and C(198)T in those strains of *S. fimicola* which were isolated from the stressed environmental conditions (stressed conditions are the harsh environmental conditions with high temperature, more UV lights, high pH from where the strains of the south slope were collected used throughout the studies for more detail about the stressed conditions and strains please see Saleem *et al.* (2001),

Table 1: Polymorphisms detection in the exonic region of *RpL30* genes amplified in the different strains of the *S. fimicola* in comparison with the *RpL30* gene of *S. macrospora*

Sr. No.	Base Substitutions in exon of the RpL30 gene	<i>RpL30</i> S ₁	RpL30 S ₂	$RpL30 S_3$	<i>RpL30</i> N ₅	<i>RpL30</i> N ₆	<i>RpL30</i> N ₇	Percentage Prevalence (%)
1	A(101)T	+	+	+	-	-	-	50
2	T(180)A	+	+	+	+	-	-	60
3	A(197)G	+	+	+	-	-	-	50
4	C(198)T	+	+	+	-	-	-	50
5	C(244)G	+	+	+	+	+	+	100

Table 2: Prediction of Phosphorylation and Glycosylation in filamentous fungi

Organism	Phospl	Phosphorylation			Glycosylation		
Serine		Threonine	Tyrosine	Serine	Threonine		
Neurospora	<mark>\$6</mark> ,\$8,\$ <mark>12,\$23</mark> ,\$56,\$62, \$65,\$91	T33,T50	Y60	<mark>S6</mark> ,S7,S <mark>8</mark>	nil		
Crassa		T75, <mark>T92</mark>	Y <mark>61</mark>				
Sordaria fimicola	<mark>\$6</mark> ,\$7,\$8,\$ <mark>12</mark> ,\$ <mark>23</mark> ,\$39,\$57,\$63,	T51, T68, T76	<mark>Y61</mark>	<mark>S6,S8</mark>	nil		
		T92	Y62				
Sordaria macrospora	<mark>\$6</mark> ,\$7,\$9,\$ <mark>12</mark> ,\$ <mark>23</mark> ,\$39,\$57,\$63,	T33, T51	<mark>Y61</mark>	<mark>S6,S8</mark>	nil		
	S66,S91	T76,T <mark>92</mark>	Y62				
Vary Highlighted area - conserved modification regions							

Key: Highlighted area = conserved modification regions

Table 3: Prediction of Sumoylation in S. fimicola, N. crassa and S. macrospora

Organism	Position	Peptide	Score	Cutoff	P-Value	Туре
S. fimicola	7	*MAPKSSKSDAQSIG	3.426	3.32	0.153	Sumoylation Nonconcensus
S. fimicola	<mark>44</mark> - 48	LRSGKAK LILIS ANTPPLR	47.423	29.92	0.024	SUMO Interaction
N. crassa	<mark>44</mark> - 48	LRSGKAK LILIS ANTPPLR	47.423	29.92	0.024	SUMO Interaction
S. macrospora	7	*MAPKKSKSDAQSIG	3.866	3.32	0.132	Sumoylation Nonconcensus
S. macrospora	<mark>44</mark> - 47	LRGKAK LILIS ANTPPLR	47.423	29.92	0.024	SUMO Interaction

Arif *et al.* (2017). We have found 1.5% polymorphisms in RpL30 gene and according to Carlson *et al.* (2004) there is a chance to have 20–30% genomic differences in ribosomal proteins that act as candidate genes. Urban *et al.* (2007) also found 19 % of polymorphism in nucleotide sequences of ribosomal proteins.

Many advanced methods for the prediction of posttranslational modifications (PTMs) exist and many are made publicly available. These modern PTM-specific databases aid to predict phosphorylation and glycosylation sites among different proteins (Butt *et al.*, 2012). Similar server is used in the present study to determine phosphorylation modifications in *RpL30* protein. These predictor tools give novel ideas for PTM visualization and improvements (Blom *et al.*, 2004) for prediction specificity (by using ESS – evolutionary stable sites)/. NetPhosK database is a new method for kinase specific prediction of phosphorylation sites. The new server, NetPhosK, is made publicly available at the URL http://www.cbs.dtu.dk/services/NetPhosK/.

No acetylation and methylation was predicted on any amino acid residues of L30 protein during current investigation in any organism. Methylation was present in six ribosomal proteins (S11, L3, L16, L11, L30, and L12), the acetylation was present in three ribosomal proteins (L7, S18, and S5) and one protein (S12) was methylthiolated (Nesterchuk *et al.*, 2011).

In this investigation we found T92 and Y61 phosphorylation were found to be conserved in *S. fimicola*, *N. crassa* and *S. macrospora*. In contrast to the current

findings (Lai and Pelech, 2016), have recognized three conserved phosphorylation modification sites (T198, T207 and Y210 from ERK1) by mass spectrometry. The Y210 site might be vital for appropriate conformational organization of the active site. The auto-phosphorylation of T92 and Y61 as predicted during this study may enhance the catalytic activity and stability of RpL30 protein in filamentous fungi. As we have found S6, S12, S23, T92 and Y61 conserved phosphorylation sites of RpL30 protein within the three members' N. crassa, S. fimicola and S. macrospora of Sordariaceae family, we can propose that hyper-phosphorylation in kinase action T-loop may act as common mechanisms for down regulation of protein kinase when the upstream kinases get activated. Likewise, Lai and Pelech (2016), proposed the same function of T207 and Y210 phosphorylation of ERK1protein in humans.

Sumoylation (SUMO) is one of the most significant and ubiquitous PTMs that takes place by the covalent linkage of proteins by SUMOs (Gill, 2005). Up to that time, experimental studies proposed that most of these sites are present on A, I, L, M, P, F, V amino acid residues. By using online database we manually predicted three Sumoylation sites in case of *S. fimicola* and *S. macrospora* on positions *i.e.*, 7, 44 and 48 while two sumoylation sites *i.e.*, 44–48 were predicted for ribosomal protein *L30* in *N. crassa*. We have found two type of Sumoylation *i.e.*, Non consensus SUMOs and SUMO interaction.

Here, we also present highly conserved nuclear export signal for *RpL30* protein in all three studied fungi on residue

Table 4: Prediction of Lucien rich nuclear export signals in S. fimicola, N. crassa and S. macrospora

Seq-Pos-Residue	ANN	HMM	NES
34-L	0.140	0.835	0.546
35-K	0.080	0.851	0.564
36-A	0.095	0.851	0.566
37-L	0.121	0.862	0.586
38-R	0.087	0.862	0.588
39-G	0.099	0.862	0.586
40-K	0.076	0.862	0.573
41-A	0.082	0.862	0.574
42-K	0.114	0.862	0.577
43-L	0.153	0.862	0.584
44-I	0.181	0.862	0.603
45-L	0.254	0.863	0.635

S.m MAPKK<mark>S</mark>KSDAQ<mark>S</mark>IGAKLALVIK<mark>S</mark>GKVVLGYR<mark>ST</mark>LKALR+GKAKLILI<mark>S</mark>ANTPPLRK<mark>S</mark>ELE 60 S.f MAPKK<mark>S</mark>KSDAC<mark>S</mark>IGAKLALVIK<mark>S</mark>GKVVLGYRSTLKALR+GKAKLILI<mark>S</mark>ANTPPLRKSELE 60 N.c MAPKK<mark>S</mark>KSDAC<mark>S</mark>IGAKLALVIK<mark>S</mark>GKVVLGYR<mark>ST</mark>LKALR+GKAKLILISANTPPLRK<mark>S</mark>ELE 60

YYSMMSKTAVHHYTGTNIELGTACGKLFRCSTMAILDAGDSDILADQQQ 109 YYSMMSKTAVHHYTGTNIELGTACGKLFRCSTMAILDAGDSDILADQQQ 109 YYSMMSKTAVHHYTGTNIELGTACGKLFRCSTMAILDAGDSDILADQQQ 109 S.f

N.c

Fig. 1: Multiple sequence alignment of RpL30 protein of filamentous fungi to align conserved potential phosphorylation sites on Ser/Thr/Y residues

S. m= Sordaria macrospora; Sordaria fimicola; Neurospora crassa Highlighted region= conserved potential phosphorylation sites

34–45 amino acid (Table 4). Nuclear export signals (NESs) are particularly essential to regulate the location of protein inside the cell that has ultimate impact on transcription and other nuclear processes, which are important to the sustainability of the cell (Cour et al., 2004). In Table 4, the NES score from the HMM and ANN scores is given for residue 34-45. The Artificial Neural Network (ANN) is specified to identify the hydrophobic position mostly on the C-terminal of the NES motif.

Conclusion

Based upon the above mentioned results it was concluded that T92 and Y61 are two most conserved phosphorylation sites on threonine/tyrosine residues that may play an important role to enhance the catalytic activity and stability of RpL30 protein.

References

- Altschul, S.F., W. Gish, W. Miller, E.W. Myers and D.J. Lipmaan, 1990. Basic local alignment search tool. J. Mol. Biol., 215: 403-410
- Arif, R., F. Akram, T. Jamil, H. Mukhtar, S.F. Lee and M. Saleem, 2017. Genetic variation and its reflection on posttranslational modifications in frequency clock and mating type a-1 proteins in Sordaria fimicola. BioMed Res. Intl., 2017: 1-10
- Arnold, R.J., B. Polevoda, J.P. Reilly and F. Sherman, 1999. The action of N-terminal acetyl-transferases on yeast ribosomal proteins. J. Biol. Chem., 274: 37035-37040
- Ban, N., R. Beckmann, J.H. Cate, J.D. Dinman, F. Dragon, S.R. Ellis and M.A. McAlear, 2000. A new system for naming ribosomal proteins. Curr. Opin. Struct. Biol., 24: 165-169
- Beltrao, P., V. Albanèse, L.R. Kenner, D.L. Swaney, A. Burlingame, J. Villén and N.J. Krogan, 2012. Systematic functional prioritization of protein posttranslational modifications. Cell, 150: 413-425

- Ben-Shem, A., L. Jenner, S. Melnikov, N.G.D. Loubresse, M. Iskakova, A. Urzhumtsev and M. Yusupov, 2012. Crystal structure of the 80S yeast ribosome. Curr. Opin. Struct. Biol., 22: 759-767
- Blom, N., T. Sicheritz-Pontén, R. Gupta, S. Gammeltoft and S. Brunak, 2004. Prediction of post-translational glycosylation and phosphorylation of proteins from the amino acid sequence. Proteomics, 4: 1633-1649
- Butt, A.M., I.B. Khan, M. Hussain, M. Idress, J. Lu and Y. Tong, 2012. Role of post translational modifications and novel crosstalk between phosphorylation and O-beta-GlcNAc modifications in human claudin-1,-3 and -4. Mol. Biol. Rep., 39: 1359-1369
- Carlson, C.S., M.A, Eberle, M.J. Rieder, Q. Yi, L. Kruglyak and D.A. Nickerson, 2004. Selecting a maximally informative set of singlenucleotide polymorphisms for association analyses using linkage disequilibrium. Amer. J. Hum. Genet., 74: 106-120
- Cascorbi, I., T. Gerloff, A. Johne, C. Meisel, S. Hoffmeyer, M. Schwab and I. Roots, 2001. Frequency of single nucleotide polymorphisms in the P-glycoprotein drug transporter MDR1 gene in white subjects. Clin. Pharmacol. Ther., 69: 169-174
- Cour, T.L., L. Kiemer, A. Mølgaard, R. Gupta, K. Skriver and S. Brunak, 2004. Analysis and prediction of Leucine-rich nuclear export signals. Protein Eng. Des. Select., 17: 527-536
- Din, N., I. Ahmad, S. Elahi, D.C. Hoessli and A.R. Shakoori, 2010. The function of GluR1 and GluR2 in cerebellar and hippocampal LTP and LTD is regulated by interplay of phosphorylation and O-GlcNAc modification. J. Cell Biochem., 109: 585-597
- Dobrenel, T., E. Mancera-Martinez, C. Forzani, M. Azzopardi, M. Davanture, M. Moreau, M. Schepetilnikov, J. Chicher, O. Langella, M. Zivy, C. Robaglia, L.A. Ryabova, J. Hanson and C. Meyer, 2016. The Arabidopsis TOR kinase specifically regulates the expression of nuclear genes coding for plastid ribosomal proteins and the phosphorylation of the cytosolic ribosomal protein S6. Front. Plant Sci., 7: 1611-1627
- Eriksson, O.E., H.O. Baral, R.S. Currah, K. Hansen, C.P. Kurtzman, G. Rambold and T. Laessøe, 2004. Outline of Ascomycota. Myconet, 10:1-99
- Gill, G., 2005. Something about SUMO inhibits transcription. Curr. Opin. Genet. Dev., 15: 536-541
- Halushka, M.K. J.B. Fan, K. Bentley, L. Hsie, N. Shen, A. Weder, R. Cooper, R. Lipshutz and A. Chakravarti, 1999. Patterns of singlenucleotide polymorphisms in candidate genes for blood-pressure homeostasis. Nat. Genet., 22: 239-247
- Khoury, G.A., R.C. Baliban and A. Christodoulos, 2011. Proteome-wide post-translational modification statistics: frequency analysis and curation of the swiss-prot database. Sci. Rep., 1: 1-5
- Kirk, P.M., P.F. Cannon, D.W. Minter and J.A. Stalpers, 2008. Dictionary of the Fungi, 10th edition, pp: 643-644. Wallingford: CABI
- Lai, S. and S. Pelech, 2016. Regulatory roles of conserved phosphorylation sites in the activation T-loop of the MAP kinase ERK1. Mol. Biol. Cell, 27: 1040-1050
- Lothrop, P., M.P. Torres and S.M. Fuchs, 2013. Deciphering posttranslational modification codes. FEBS J., 587: 1247-1257
- Macías, S., M. Bragulat, D.F. Tardiff and J. Vilardell, 2008. L30 binds the nascent RPL30 transcript to repress U2 snRNP recruitment. Mol. Cell, 30: 732-742
- Milgrom, E., H. Diab, F. Middletonm and P.M. Kane, 2007. Loss of vacuolar proton-translocating ATPase activity in yeast results in chronic oxidative stress. J. Biol. Chem., 282: 7125-7136
- Minguez, P., L. Parca, F. Diella, D.R. Mende, R. Kumar, M. Helmer-Citterich, A.C. Gavin, N.V. Noori and P. Bork, 2012. Deciphering a global network of functionally associated posttranslational modifications. Mol. Syst. Biol., 8: 1-14
- Nesterchuk, M.V., P.V. Sergiev and O.A. Dontsova, 2011. Posttranslational modifications of ribosomal proteins in Escherichia coli. Acta Nat., 3: 23 - 33
- Nukarinen, E., T. Nagele, L. Pedrotti, B. Wurzinger, A. Mair, R. Landgraf, F. Bornke, J. Hanson, M. Teige, E. Baena-Gonzalez, W. Droge-Laser and W. Weckwerth, 2016. Quantitative phospho proteomics reveals the role of the AMPK plant ortholog SnRK1as a metabolic master regulator under energy deprivation. Sci. Rep., 6: 1-19

- Pawson, T. and J.D. Scott, 2005. Protein phosphorylation in signalling—50 years and counting. *Trends Biochem. Sci.*, 30: 286–290
- Pietro, S., T.M. Fulton, J. Chunwongesm and S.D. Tanksley, 1995. Extraction of high quality DNA for genome sequencing. *Mol. Biol. Rep.*, 13: 207
- Raman, M., W. Chen and M.H. Cobb, 2007. Differential regulation and properties of MAPKs. *Oncogene*, 26: 3100–3112
- Rudra, D. and J.R. Warner, 2004. What better measure than ribosome synthesis. *Gene. Dev.*, 18: 2431–2436
- Saleem, M., B.C. Lamb and E. Nevo, 2001. Inherited differences in crossing over and gene conversion frequencies between wild strains of *Sordaria fimicola* from Evolution Canyon. *Genetics*, 159: 1573– 1593
- Schmeing, T.M., P.B. Moore and T.A. Steitz, 2003. Structures of deacylated tRNA mimics bound to the E site of the large ribosomal subunit. *RNA*, 9: 1345–1352
- Stark, H., M.V. Rodnina, H.J. Wieden, F. Zemlin, W. Wintermeyer and M.V. Heel, 2002. Ribosome interactions of aminoacyl-tRNA and elongation factor Tu in the codon-recognition complex. *Nat. Struct. Biol.*, 9: 849–854
- Turck, F., F. Zilbermann, S.C. Kozma, G. Thomas and F. Nagy, 2004. Phyto hormones participate in an S6 kinase signal transduction pathway in *Arabidopsis. Plant Physiol.*, 134: 1527–1535
- Urban, T.J., C. Yang, L.L. Lagpacan, C. Brown, R.A. Castro, T.R. Taylor and E.J. Carlson, 2007. Functional effects of protein sequence polymorphisms in the organic cation/ergo-thioneine transporter OCTN1 (SLC22A4). *Pharmacogenom. J.*, 17: 773–782

- Vilardell, J., J.Y. Shaoqing and J.R. Warner, 2000. Multiple functions of an evolutionarily conserved RNA binding domain. *Mol. Cell*, 5: 761– 766
- Vodermaier, H.C., 2004. APC/C and SCF: controlling each other and the cell cycle. *Curr. Biol.*, 14: 787–796
- Warner, J.R. and K.B. McIntosh, 2009. How common are extra ribosomal functions of ribosomal proteins? *Mol. Cell*, 34: 3–11
- Williams, A.J., J. Werner-Fraczek, I.F. Chang and J. Bailey-Serres, 2003. Regulated phosphorylation of 40S ribosomal protein S6 in root tips of maize. *Plant Physiol.*, 132: 2086–2097
- Wool, I.G., Y.L. Chan and A. Gluck, 1995. Structure and evolution of mammalian ribosomal proteins. *Biochem. Cell Biol.*, 73: 933–947
- Yerlikaya, S., M. Meusburger, R. Kumari, A. Huber, D. Anrather and M. Costanzo, 2016. TORC1 and TORC2 work together to regulate ribosomal protein S6 phosphorylation in *Saccharomyces cerevisiae*. *Mol. Biol. Cell*, 27: 397–409
- Yoganathan, T., M. Horikoshi, R.G. Roeder and B.H. Sells, 1993. Direct binding of yeast transcription factor (TFIID) to the ribosomal protein L32 (*rpL32*) TATA-less promoter sequence. *FEBS J.*, 326: 163–166
- Yusupov, M.M., G.Z. Yusupova, A. Baucom, K. Lieberman, T.N. Earnest, J.H. Cate and H.F. Noller, 2001. Crystal structure of the ribosome at 5.5 Å resolution. *Science*, 4: 883–896
- Zeidan, Q. and G.W. Hart, 2010. The intersections between O-GlcNAcylation and phosphorylation: implications for multiple signaling pathways. J. Cell Sci., 123: 13–22

[Received 19 Feb 2019; Accepted 22 Jul 2019; Published (online) 22 Dec 2019]